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Abstract

With the aid of a generalized variational method, in this paper, a theoretical model for soft ferromagnetic shells is
derived to describe their magnetoelastic behavior in an applied magnetic field. Having made a quantitative comparison
between the numerical predictions given by several theoretical models and the experimental results on strains of a
cylindrical shell, we find that the predictions got by our model are in good agreement with the experimental data. It is
also found that the Moon’s model is a special case of the model derived in this paper when the relative magnetic
permeability . > 10*, which confirms that it is reasonable for the Moon’s model to calculate strains of the soft ferro-
magnetic shells. Having displayed the distribution of the equivalent magnetic force in the length of the cylindrical shell
and its circumferential bending strains with different elastic end constraints, we give an explanation for the discrepancy
between Moon’s analytical results and his experimental ones.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

There are many devices made of soft ferromagnetic materials and worked in electromagnetic field, such
as fusion reactors, magnetically levitated vehicles and magnetic forming devices. When a ferromagnetic
structure is placed in a magnetic field, it will be magnetized, and then deformed under a magnetic force
system arisen from the magnetization. In general, the deformation of the ferromagnetic structure will also
influence the magnetic force system subjected on the structure. It is complicated to describe this kind of
coupled magnetoelastic problem since the magnetic force on the structure cannot be directly measured and
this coupled problem is inherently nonlinear.

Moon and Pao (1969) firstly found that when a ferromagnetic beam-plate is in a transverse magnetic
field, the natural frequency of the plate decreases with an increasing magnetic-field intensity and becomes
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near zero as the field attains a critical value, which causes the same plate to buckle statically. Twenty-four
years later, Takagi et al. (1993) conducted another interesting experiment and found that when a ferro-
magnetic beam-plate is in an in-plane magnetic field, the natural frequency of the plate increases with an
increasing magnetic-field intensity. There exist several famous theoretical models in magnetoelasticity, such
as the Pao and Yeh’s model (1973), the Eringen and Maugin’s model (1990) as well as the Moon and Pao’s
model (1968). These models can qualitatively predict the Moon-Pao’s experiment of the plate in a trans-
verse magnetic field. However, Zhou and Miya (1998) found that when these models are used to describe
the Takagi et al.’s experiment (1993) of the beam-plate in an in-plane magnetic field, the predicted natural
frequency of the plate decreases. It states that all existing theoretical models are not suitable to describe the
magnetoelastic behavior of the plate in an in-plane magnetic field. Zhou and Miya subsequently suggested a
new theoretical model so that the Tagaki et al.’s experiment is qualitatively simulated well. For a ferro-
magnetic plate in complex magnetic fields, Zhou and Zheng (1997) derived a general expression of the
magnetic force which was used by Zheng et al. (1999) to describe the bending and buckling of a rectangular
ferromagnetic plate in an oblique magnetic field.

Besides the researches on ferromagnetic plates, soft ferromagnetic shells have also been paid more at-
tention to since the shell is often used to shield a volume containing sensitive electronic equipment from
magnetic field. Moon (1984) experimentally displayed that a thin, soft ferromagnetic cylindrical shell
supported at its ends by circular nylon plates could produce bending in a uniform magnetic field. He
analyzed that a distribution of body couples acts to bend the shell and calculated the magnetic forces with
magnetic tension as they exert on the rigid and infinite cylindrical shell. An expression of the solution was
obtained to predict stresses and strains of the cylindrical shell. However, there exist some discrepancies
between the theoretical results and the experimental data. For example, the predicted maximum stress at
0.05 T was 990 N/cm? and the measured stress was 520 N/cm?. Moon (1984) suggested that “more-refined
experiments as well as more sophisticated shell analysis, taking into account the finite-length and end
constraints, are need to assess the accuracy of the analytical method.” Miyata and Miya (1988) conducted a
similar experiment, in which a tube was in an applied magnetic field and was supported with fixed condition
at both ends. They also gave some numerical results by the body pole model in which the shell experiences
only the torque. Their numerical results are lower than their measured data, the maximum relative dis-
crepancy is about 40%.

In this paper, a variational principle for soft ferromagnetic shells is suggested and an expression of the
magnetic force subjected on the shell is derived. The finite element method is adopted to respectively
calculate the deformation of a finite-length cylindrical shell and the magnetic fields in and out of the shell.
The numerical simulation on the Miyata and Miya’s experiment shows that the predicted results are in good
agreement with the experimental data. In addition, the expression of the magnetic force suggested by Moon
(1984) is confirmed to be a special case involved in our theoretical model. Having analyzed the effect of an
elastic constant of the end constraints on the stresses of the cylindrical shell, we find that the difference
between the actual end constraints and Moon’s idealized treatment may be main reason which leads to the
discrepancies between Moon’s predicted results and his measured ones.

2. Fundamental equations

In this section, we first give out an expression of a total energy functional for a soft ferromagnetic
thin shell in a magnetic field. Then, the first-order variation of the energy functional is derived and
an expression of the magnetic force subjected on the shell is obtained. Finally, two sets of fundamen-
tal governing equations are respectively established for the shell and the magnetic fields in and out of the
shell.
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Fig. 1. Sketch of ferromagnetic shell in applied magnetic filed.

2.1. Energy functional

Consider a thin soft ferromagnetic shell with thickness 4 placed in a stationary magnetic field By, without
electric field, charge distribution and conducting current on and in the shell (as shown in Fig. 1). For linear,
homogeneous and isotropic magnetic materials, we have the magnetic constitutive relationships as follows

M =y H" inQ" (1)
B" = you,H" in QF (2)
M =0 inQ (3)
B —uH inQ @)

in which Q* and Q™ are the inside and outside region of the shell, respectively; M" and M~ are respectively
the magnetization vectors in the shell and in vacuum; B*, H*, and B~ as well as H™ are the magnetic
induction intensity vectors and magnetic intensity vectors inside and outside the shell; u, and g, are the
magnetic permeability in the shell and in vacuum, respectively; y,, is the susceptibility of the ferromagnetic
shell and y,, = p, — 1.

Taking u = {u, v, w} as the displacement vector of thin shell, S, as a surface which encloses and is far
away from the region of the ferromagnetic shell, we can write the magnetic-energy functional for the system
as follows

Mgt =5 [ (T8 do45 [ (Ve et [nBugds 5
2 Jorw 2 Jo o
where ¢ is a magnetic scalar potential which satisfies —V¢ = H, V is a 3D gradient operator (i.e.,
V = 0/0xi + 0/0yj + 0/0zk, in which i, j, and k are unit vectors along the x-, y-, and z-axis, respectively).
When external mechanical forces on the ferromagnetic shell and the effect of shear deformation of the
shell are neglected, the mechanical strain energy for the system can be expressed as

1
H2{¢),ll} = E /Q+ (Sa()'d + epop + 8“/;0'0(/;) dv

1

1
=3 /S+ {C[8§ + &5+ 2ve,ep + 5= ey | + DG+ 15+ 2 + (1 — V)Xiﬂ]}ds (6)
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in which «, f are principal curvature lines on the middle surface S* of the thin shell (as shown in Fig. 1);
C=Yn/1 —v* and D = Yr*/12(1 —+?) are the tensile rigidity and the flexural rigidity of the shell, re-
spectively; Y is the Young’s modulus, v the Poisson’s ratio, # the thickness of the shell; {e,, &g, &,
Lo> s Lap» O Op5 Oap } are respectively the strains and stresses of the thin shell (Timoshenko and Woinow-
sky-Krieger, 1959).

The total energy functional of the magnetoelastic system can be obtained by adding I1; for the magnetic
energy and II, for the elastic strain energy. That is

1{¢,u} = IL{p,u} + [l{¢,u} (7)

2.2. Generalized variational principle

Here, we take 8¢ as one admissible variation on magnetic potential function of the system and du as
another admissible variation on displacement of the shell. It is obvious that we have

5 =3¢p* =8¢ onS (8)

du=0 on C, 9)

in which S is the enclosed surface of the shell region Q*; C, denotes the boundary of the shell on which
displacements are known. By a generalized variational principle of magnetoelastic system, we have

SMI{¢p,u} = dyI{¢p,u} + 8, J1{¢p,u} (10)
where
e apT ¢
5 _ 2 1+ 5o dv — 2 S d db ds
ottu == [ (508" o= [ (980 e+ f | -0
+/ n- [V + Bylog ds (1)
So
and
1 0B 0 0 04
Sull{¢,u} = — / AB{{ (BN,) — N/s aﬁ(ANa/f)+Na/faﬂ]5u+[ ﬁ(AN/f) Na@
0 OB o1/0 0 04 OB
+ 2 BNg) + 8y 2 o [a 1 (5 (B + g5 ay) + 500y~ 50 )
21/ 0 B o4 N, Ny
+a—ﬁE<aﬁ(AM/;) a (BMO(/;)+6 Ma/f a[))M> AB<R Rﬂ)}Sw}ds

+% /ﬁ[uour(H*)2 — o (H7)’J 25 ,dwds + {/ /C} (12)

where 4 and B are respectively the Lame’s constants along the directions of « and f, R, and Ry are the
principal curvature radii, respectively; { fc,, R fc, ---} means the integration associated with the dis-
placement and stress boundary conditions of the shell; N,, Ny, N,g and M,, Mg, M, respectively represent
membrane stress and bending stress resultants of the thin shell and are defined by

C
N, = C(e, +vep), Ng=Clep+ve,), Ny= 5(1 — V)&yp (13)

M, =D(y, + vxﬁ), My = D(Xﬂ +vy,), M,up=D(— V)Xo(/? (14)
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Having considered jumping conditions of the magnetic field on the surface of the ferromagnetic shell,
that is

n-(B"—-B)=0, nx(H -H )=0o0nS (15)

or

1
H =uHS, B =—B onS (16)
Ky

n

an expression of the equivalent magnetic force exerted on the shell ¢¢" (o, ), which can be regarded as a
transformation from the magnetic energy to the mechanical energy of the system, is obtained by

g:" (o1 f) = BB (M (o B, /D) — (M (o B —h/2)]} = B2 (M (o, B /)
— [H; (2 B, —h/2)} (17)

where ¢ denotes the normal direction of the shell middle surface, together with « and f to constitute an
orthogonal curvilinear coordinate system; H and H," are the normal and tangential component vectors of
magnetic field H" (= H; 4+ H/) on the surface S.

2.3. Fundamental governing equations
By 8I1{¢,u} = 0, one can derive all fundamental equations and boundary conditions for a ferromag-

netic shell in an applied magnetic field B, as follows
Governing equations for magnetic field

VT =0 in Q' (u) (18a)
V¢~ =0 in Q (u) (18b)
with jumping conditions
_ dpt A~
+ oY _YY
d) - (rb ) iur an an on S (18C)
and the boundary condition
V¢~ = iBO at oo or on Sy (18d)
Ho
Equilibrium equations for thin shell
0 0 04 OB
B A = 1
55 (BN + aﬁ(Na,;)JraﬁNa,; 5 V=0 (19a)
9 6 0B 04
010 0 04 0B ol1[0d 0 OB 04
az |:a(BMa) +@(AMO<[3) +aﬂMaﬁ a ﬁ:| aBB |:6[8 (AMI}) +a(BMaﬁ) “FaMaﬁ —@Ma
N, Ng
AB ABq em 1
waB( T4 ) = A (19¢)

the boundary conditions on displacements and stresses of the shell can be obtained from the term
{Je, -+ Je, -} in Eq. (12).
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It should be noted from Egs. (18a) and (18b) that the magnetic-field distribution of the shell is depended
on the deformation u of the shell. On the other hand, the equivalent magnetic force exerted on the shell is
depended on the magnetic-field distribution. So the magnetic-field distribution and the deformation of the
ferromagnetic shell are coupled and influenced each other. In this case, the magnetoelastic problem is
nonlinear even if the linear theory for magnetic materials and the shell is adopted.

3. Analyses and reviews on several models

There are lots of theoretical models which can be used to describe the magnetoelastic behavior of fer-
romagnetic structures. Some of them are famous, such as the Pao—Yeh’s model, the Eringen—Maugin’s
model, and the Moon-Pao’s model. From these models, the corresponding expressions of equivalent
magnetic forces exerted on ferromagnetic structures are derived to predict magnetoelastic behavior of
ferromagnetic structures. Zhou and Zheng (1997) found that all of them can qualitatively simulate the
Moon’s experiment (1968) of magnetoelastic buckling well, but cannot be used for the Takagi et al.
one(1993). Here, we will firstly verify that the model suggested in this paper, by generated to the ferro-
magnetic plate in applied magnetic fields, is suitable to simulate not only the Moon’s experiment, but also
the Tagaki et al.’s one. Then, the equivalent magnetic force system by other models are derived for a thin
ferromagnetic shell, and the distribution of the magnetic forces from these models to show the differences
among these existing theoretical models is furthermore displayed. Finally, a discussion about the Moon’s
model (1984) is given to demonstrate that it is a special case of the model given in this paper when g, > 10%.

3.1. The model in this paper

In our model, the equivalent magnetic force (only in normal direction &) subjected on the middle surface
of the shell is given by Eq. (17). Once we use it for a soft ferromagnetic plate, it will be rewritten as follows

6" (x,9) = EEH, (5,3, h/2)F = H] (e, 3, ~h/DF} = S (H] (e, h/2))

- [Hj(xaya _h/2)]2} (20)
where x, y represents the coordinate axes on the mid-plane of thin plate.

For a transverse magnetic field, we have H > H', and the magnetic force acted on the plate is sim-
plified as

m l/t fuI‘X}'n
g (6, ) == {[H; (x,y,h/2) = H} (x, 5, —1/2)]"} (21a)
which is just same as the model suggested by Zhou and Zheng (1997) to predict the Moon and Pao’s ex-
periment (1968) not only in quality, but also in quantity well.

For an in-plane magnetic field, we have H > H, so the magnetic force subjected on the plate becomes

¢ (r.y) = =P (M (0, h/2)F = [H] (v, —h/2D)F) (21b)

It is just the Zhou and Miya’s model (1998), which can simulate the Tagaki et al.’s experiment, that is, the
predicted natural frequency of ferromagnetic beam-plate increases with an increasing magnetic-field in-
tensity. Consequently, when the model suggested in this paper is used for a ferromagnetic thin plate, it can
simulate the magnetoelastic behavior of the plate not only in a transverse but also in an in-plane magnetic
field.
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3.2. The Moon—Pao’s model

For a soft ferromagnetic thin plate, Moon and Pao (1968) neglected the magnetic field arisen from
magnetization of the materials, and gave the magnetic body force f*" and body couple ¢ as follows
" =0, ¢=M" xB, (22)

Having simplified the force system to the middle surface of the shell, we have the equivalent normal
magnetic force

n/2
¢ = / [V x (M* x By)] - nd¢ (23a)
—h/2
and tangential magnetic force
h/2
¢ = / [V x (M* x By)] x ndé (23b)
—h/2

3.3. The Pao—Yeh's model
Based on the Maxwell’s stress tensor
1
T = B"H' — E,uo(H+ -HYI (24)

in which I is a unit matrix, Pao and Yeh (1973) derived the magnetic force system subjected on a ferro-
magnetic body as follows

fem — V- Tom — lu'02}’(m V(H+)2 in Q+ (253_)
F" =01 =2 (z,H;’n on's (25b)
Once we simplify this force system to the middle surface of the shell, we have

em _ HoXm b2

: 2 Jowp
= LBl 141 . 2)F = I G 207} + P2 (I (o, o/ 2

V(H") -ndé + 52 ([ (o, f.1/2) = M (2 . ~h/2)}

- [Hj(a7 :Ba _h/z)]z} (263)
and
/2
g = Fokn V(H) x ndé (26b)
‘ 2 Jap

3.4. The Eringen—Maugin’s model

Eringen and Maugin (1990) chose the Maxwell’s stress tensor in another form

1
T =B'H" —(B"-B"/uy —M" - B)I (27)



6904 X. Zheng, X. Wang | International Journal of Solids and Structures 40 (2003 ) 6897-6912

so a corresponding magnetic force system is taken as

"= V. T = %V(Hﬂz in Q° (28a)
F™ = —n - [T] = —%(XmHj)zn on S (28b)

Having simplified this system to the middle surface of the shell, we have

)2 2
g =BEkn [ v(HY) nde - B M (2 p, /2 — [ (2 B.—h/2)[}

: 2 —h/2
= BLn {1 e B, /D = (M (o B =/ 2) + RS {(H (o B /2)F = [H (o, B, —h/2)F)
(29a)
and
em _ Hobletm " V(H) x ndé (29b)
2 —h/2

3.5. The Moon’s model

Moon (1984) gave an analytical solution to a cylindrical shell in a uniform magnetic field. He firstly
determined the magnetic field distribution on the rigid cylindrical shell, and then calculated the magnetic
force acted on it by

@%5ﬁmwmmﬂwMﬁ%mm (30)

which he called as magnetic tension. In fact, it is not difficult to find that Eq. (30) just means the magnetic
pressure difference between the outer and the inner surface of the cylindrical shell, and also that we can get
the magnetic pressure difference from Eq. (17) once the case u.H," > H is considered. By calculating and
comparing the magnetic forces respectively from Eqs. (17) and (30), we find that there is almost no dif-
ference between two models for the case u, > 10*. Consequently, the Moon’s model (1984) is just a special
case of the model suggested in this paper (see Section 5).

4. Computation formulations

In order to calculate the deformation of a cylindrical shell with finite-length and end constraints in a
uniform magnetic field, a computation program is suggested in this section. The finite element method is
respectively used to get the deformation of the cylindrical shell and the magnetic-field distributions both in
and out of the shell. An iterative method is used in the program to solve the nonlinearity arising from the
interaction between the deformation and the magnetic fields.

4.1. FEM analysis for magnetic field
Here, we will numerically analyze the magnetic-field distribution in regions Q* and Q~ that are influ-

enced, respectively, by the magnetization of the ferromagnetic cylindrical shell and its deformation. For a
given deformation state of the shell, the magnetic field distribution, that is the solution of the Egs. (18a)-
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(18d), minimizes the functional of Eq. (5). One can discretize the 3D regions of Q" and Q" into finite ele-
ments, and set the surface and the middle surface of the shell being located on the surface of the elements.
Here the 3D 20-node hexahedral element is chosen. A typical mesh for the ferromagnetic shell region and
outside region of the shell is shown in Fig. 3a. Having taken [N(x, y,z)], as a shape function, we can write the
value of the magnetic potential ¢ in compact matrix form as follows

b(x,,2) = N(x, 3, 2)L,[®], (31)

where [®], is a column matrix which consists of the value of ¢ on each node of the element e. Integrating
Eq. (5) in the subregion of each element, and substituting Eq. (31) into it, we can obtain

(g uy =Y @K @], - (@]l [P, (32)

e ey

where ¢ is the element on Sp; [K*"], is a magnetic stiffness matrix of the element e and [P], is a inhom-
ogenous term on Sy, which are respectively in following forms

VN|I[VN],dv Q. € Q"
[Kem]e — er ,uO,ur[ T]e [ L) v 7(“) (33&)
Jo m[VNTVNLde @, € @ (u)
P, =— / ton - Bo[N] ds S, € S (33b)
S"O
From 84I1,{¢,u} = 0, the global stiffness equation for the magnetic field is achieved by the form
[K*"][@] = [P] (34)

Since the region Q" (u) or Q (u) denotes the inside or outside region of the deformed ferromagnetic shell,
the coordinates of a point in the region Q' and on the surface S must be considered in the configuration of
the deformed shell for calculations of Eq. (33a), the coordinates x = {%, y, 2} for deformed shell is expressed
by X = x + u, where x = {x,y,z} is the coordinates for unformed shell. Consequently, the magnetic rigidity
matrix [K*"] should be a function of the displacement u, that is

(K] = [K* ()] (35)

which states the effect of the deformation of the shell on the deformation of the magnetic field or the
magnetic potential ¢(x,y,z).

4.2. FEM analysis for deformation of cylindrical shell

For a ferromagnetic cylindrical shell as shown in Fig. 2, taking the areas of those 3D hexahedral ele-
ments in the middle surface of shell as the shell elements, that is, a kind of eight-node shell element is chosen
for analysis of its deformation. The typical mesh of shell and the shell element are shown in Fig. 3b. We
take the global coordinate at a node of a shell element e as (r;,6;,z;) (i =1,2,...,8) and a local coordinate
system for the element as {oyn{}. The displacements at each node of the element are denoted as
(U], = {ui, vi;,w;, i, ;e }, which represent the displacements along the three axes and the rotations round
the z-axis and 0-axis, respectively. Consequently, the displacements at an arbitrary point in the subregion of
shell element can be expressed as

u = [N(y,n,0)L[U], (36)
where [N(y,#, ()], is the shape function.
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Fig. 2. Sketch of a ferromagnetic cylindrical shell in a uniform magnetic field.

With the aid of the FEM, the deformation of the cylindrical shell governed by the differential Egs. (19a)—
(19¢) with the corresponding boundary conditions can be reduced into a matrix equation

[K™][U] = [Q] (37)

where [K™] is the stiffness matrix for the deformation of the shell; [U] is a column matrix which consists of
the displacements and rotations of each node on the middle surface of shell. [Q] is a column matrix related
to the equivalent magnetic forces, it is obvious that [Q] is the function of [®], that is

[Q] = [Q([®])] (38)

4.3. Iterative arithmetic for nonlinearity

From Egs. (34), (35) and (37), (38), we can get the following formula
[U] = [K™] " [Q([K*"(w)] "' [P])] (39)

To solve the above nonlinear equation, an iterative arithmetic (Zhou et al., 1996; Zheng et al., 1999) is
employed and Eq. (39) will be taken as

Ul = [K™] 7 QK™ (w,)] ™' [P])] (40)

The iterative procedure is mainly shown as following. (i) Assuming an initial displacement [U], of shell for
an applied magnetic field By, with the interpolation function of Eq. (36) we can get the displacement u, at
the arbitrary point in the ferromagnetic medium, (ii) taking into account the effect u, on the magnetic
stiffness matrices and solving for magnetic field distribution H*, one can further calculate the magnetic
force acted on the shell by Eq. (17), (iii) with the aid of solving Eq. (40), the new displacement [U]; of shell
will be gotten and (iv) having substituted [U], for the initial value [U}, and repeating above procedure until
a pre-specified precision condition

ITULir = [ULI/IULI < & (41)



X. Zheng, X. Wang | International Journal of Solids and Structures 40 (2003) 6897-6912 6907

Outside Region

Solid Element (3D:20-Node)

0

A
4
X

7
5
”9
AN ‘

7>
A\

i

Iz

A
A\

77

77—

Vs

—

Vs

A ey .
\_\

==

/

/

Shell Element (2D:8-Node)

YN

(b)

Fig. 3. The finite element meshes for magnetoelastic shell analysis: (a) magnetic field analysis and (b) deformation field analysis for

cylindrical shell.

being satisfied, finally, the magnetoelastic solution [U] = lim [U], of the deformation for ferromagnetic

shell under an applied magnetic field By can be obtained. Here, || - || is defined the infinite vector norm, m is
the number of iterations and 0 < ¢ < 1 denotes a prescribed limit.

It is obviously that above iteration process is sensitive to the initial displacement [U], of the shell. In order
to improve the convergence of iteration, we make the magnitude of the applied magnetic field B, increase
step-by-step, and take the iterative initial displacement [U], for a given magnetic field B, as the one for the
last applied magnetic field By — AB,. The validity of this method is confirmed in our numerical simulation.

5. Numerical results and discussions

In this section, two kinds of experiments conducted by Moon (1984) and Miyata and Miya (1988) are
respectively simulated with the theoretical mode and FEM computation program proposed in this paper.
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Table 1
Material and geometric parameters for experiments
Parameter Miyata and Miya’s experiment (1988) Moon’s experiment (1984)
Length L (mm) 80 76
Radius R (mm) 15 12.7
Thickness 4 (mm) 0.5 0.254
Young’s modulus Y (MPa) 2.15%10° 2.0x10°
Poisson’s ratio v 0.3 0.3
Relative permeability y, 1000 10,000

All material and geometric parameters for these two kinds of experiments used by the authors are adopted
in our numerical program and given in Table 1. Since it is not easy to simulate the end constraints of the
cylindrical shell in Moon’s experiment, here, we will take Miyata and Miya’s experiment as an example to
verify the theoretical model suggested in this paper. Then, by introducing the effect of an elastic constant of
the end constraints on the stresses of the cylindrical shell, we calculated the magnetoelastic stress of fer-
romagnetic shell used in Moon’s experiment and tried to give a reason why there exhibited the discrepancies
between Moon’s predicted results and his measured ones.

Firstly, for the convergence and verification of the coupled FEM of magnetic field and deformation of
ferromagnetic shell, two finite element meshes were used for the magnetic field and shell. One having 2880
magnetic elements and 13,481 points (the corresponding shell elements being of 64 and points of 225), and
another having 3344 magnetic elements and 15,577 points (the corresponding shell elements being of 80 and
points of 277) are examined for the evaluations magnetic force and displacement of the cylindrical shell as a
typical mesh presented in Fig. 3. For the magnetic force distribution and displacement of shell, the dif-
ference in the results between two meshes varied in change of 1-3%. The results in this paper were generated
from the second mesh scheme.

Secondly, with adopting the geometrical and material parameters of Miyata and Miya’s experiment, we
respectively calculated the equivalent normal and tangential (i.e., the direction in §) magnetic forces given by
several theoretical models for a cylindrical thin shell before the shell deforms. The distributions of magnetic
forces are plotted in Fig. 4a—d. It is obvious that the distributions of the magnetic forces given by Eqs. (17),
(23), (26) and (29) are different, which will lead to the different predictions on the strain of the cylindrical
shell. The circumferential bending strain versus angle for the cylindrical shell is plotted in Fig. 5, in which the
angle 0 is from 0° to 90° because of the symmetry of shell. From Fig. 5a, it can be found that the theoretical
results got by the model and the numerical program suggested in this paper are in good agreement with
Miyata and Miya’s measured data. The relative errors are, respectively, 22.4% at 6§ = 0° and 15.1% at
0 = 90°, lower than Miyata and Miya’s ones which are 40% at 6 = 0° and 34.2% at 6 = 90°, respectively.
Therefore, the model and the program suggested in this paper are effective to describe the magnetoelastic
problem of soft ferromagnetic structures in magnetic field. In Fig. Sb, we plot the circumferential bending
strain versus the magnetic field intensity B} for different 0, which shows that the deformation is almost
proportional to a squared applied magnetic-field intensity, and the strain at 6 = 0° increases fast with an
increasing magnetic-field intensity By so that more attention should be paid to due to high stress even for a
small applied field. With the aid of the numerical program, the circumferential bending strains of the cy-
lindrical shell taken by Miyata and Miya in their experiment are also calculated by the Moon—Pao’s model
(i.e., Eq. (23)), the Pao—Yeh’s model (i.e. Eq. (26)) and the Eringen-Maugin’s model (i.e. Eq. (29)), re-
spectively. The circumference stains at 6 = 0° and 90° as well as the relative errors between the predicted
result and the measured one list in Table 2. From Table 2, it is can be found that the predicted results given
by this paper’s model are in better agreement with the experiment data than that given by other models.

For the Moon’s model (1984), it should be got a good prediction for the cylindrical shell according to the
discussion given in Section 3 since the magnetic permeability of soft ferromagnetic materials p, usually is
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Fig. 4. The distribution of equivalent magnetic force in circumference (z = L/2, By = 1.0 T): (a) the model in this paper, (b) Moon—
Pao’s model, (c) Pao—Yeh’s model and (d) the Eringen—Maugin’s model.

greatly high. Fig. 6 plots the magnetic forces respectively from Egs. (17) and (30) along with the relative
permeability . of soft ferromagnetic material, which displays there is almost no difference between two
models for the case . > 10*. However, the predicted maximum stress at 0.05 T, given by Moon (1984), was
990 N/cm? and the measured stress was 520 N/cm?. We try to analyze the discrepancy from two hands. On
the one hand, we firstly calculate the distribution of the magnetic force at 6 = 90° in the length z of the shell,
shown in Fig. 7. It is clear that the magnetic forces at the ends are larger than those in the middle part of the
shell. So, it may not be reasonable to treat a finite-length cylindrical shell as an infinite one. On the other
hand, since the cylindrical shell in Moon’s experiment was supported at its ends by circular nylon plates, we
introduce an elastic constant K based on the Winkler’s model into the boundary conditions in which the
cylindrical shell was not clamped or simply supported (K — oo) and also not free (K — 0). The circum-
ferential strains at different angles for a given magnetic field By = 0.05 T and several cases of the elastic
constant K are shown in Fig. 8. From Fig. 8, one can find that the effect of the end constraint on the
deformation of the cylindrical shell is obvious. When K = 3.0 x 103, the strain is about 500 N/cm?, which is
very close to Moon’s measured one.
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Table 2
The circumferential strain at the middle section of a ferromagnetic cylindrical shell in magnetic field (B, = 1.0 T)
Strain ,(x107%) Experiment result ~ This paper result Moon and Pao Pao and Yeh Eringen and
Miyata and Miya (1968) (1973) Maugin (1990)
(1988)
0=0° 250 306 531 397 489
Relative error (%) - (22.4) (112.4) (58.5) (95.6)
0 =90° -152 -175 -576 -203 -7134
Relative error (%) - (15.1) (278.9) (33.6) (4593.4)
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X. Zheng, X. Wang | International Journal of Solids and Structures 40 (2003) 6897-6912 6911

5x10°

4x10*

3x10*

(N/m?)

2x10"

em
13

q

1x10*

0 ) 1 ) 1 ) 1 )
0.000 0.019 0.038 0.057 0.076

z(m)

Fig. 7. The distribution of the magnetic force in the length (B, = 0.05 T, 0 = 90°).

1x10°

—a—K =0.0e+0
—A—K =1.0e+3
—0—K=3.0e+3
—v—K=1.0e+4
—0—K=1.0e+10

5x10°

o, (N/cm?)

-5x10°

6()

Fig. 8. Circumferential bending strain for different elastic constant K (z = L/2, By = 0.05 T).

6. Conclusions

In this paper, an expression of equivalent magnetic forces exerted on a soft ferromagnetic shell in a
magnetic field is derived by a variational principle. This expression not only can be used to describe the
magnetoelastic buckling of a magnetoelastic plate in a uniform transverse magnetic field, but also can be
used to describe the magnetoelastic vibrating of a magnetic plate in a uniform in-plane magnetic field, which
cannot be realized by other existing models. A computation formulation combined the finite element method
with the iterative method is suggested to calculate the deformation of the cylindrical shell. The numerical
simulation for the cylindrical shell, which was experimentally measured by Miyata and Miya (1988), shows
that our predictions on the circumferential strains are in good agreement with the experimental data. In
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addition, the Moon’s model (1984), which was used to predict the stress of the shell, is studied in this paper. It
is found that there is almost no difference between the Moon’s model and the model suggested in this paper
when the magnetic permeability x, > 10*. The discrepancy between the theoretical results given by Moon
(1984) and his experimental data is from the simplification of the infinite-length cylindrical shell for the finite-
length one and the effect of the end constraints of the cylindrical shell.
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